Scatter plots¶
A scatter plot shows the relationship between up to three variables by plotting each point on a coordinate plane, where the position of the point corresponds to the values of the variables being compared.
By examining the pattern and distribution of the points, you can identify relationships, correlations, and trends in the data, such as whether there’s a strong connection or no correlation between the variables.
Show code cell source
import plotly.io as pio
pio.renderers.default = "sphinx_gallery"
import plotly.express as px
import statsplotly
A simple 2-dimensional plot, with a diamond marker:
df = px.data.tips()
fig = statsplotly.plot(
data=df,
marker="diamond",
x="total_bill",
y="tip",
slicer="sex",
)
fig.show()
3D plots¶
Supplying a z dimension generates a 3-dimensional scatter:
df = px.data.tips()
fig = statsplotly.plot(
data=df,
marker="diamond",
x="total_bill",
y="tip",
z="day",
slicer="sex",
)
fig.layout.height = 600
fig.show()
Controlling data points colormapping¶
Color can be specified independently of the slicer:
df = px.data.tips()
fig = statsplotly.plot(data=df, x="total_bill", y="tip", z="day", slicer="sex", color="tip")
fig.layout.height = 600
fig.show()
Discrete color mapping¶
Supplying a string color dimension creates a discrete colormap:
df = px.data.tips()
fig = statsplotly.plot(data=df, x="total_bill", y="tip", z="day", slicer="sex", color="day")
fig.layout.height = 600
fig.show()
Full details of the API : plot()
.