statsplotly package

statsplotly.barplot(data: DataFrame | dict[str, Sequence[Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]]] | Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], x: str | None = None, y: str | None = None, orientation: str | None = None, slicer: str | None = None, slice_order: list[str] | None = None, color: str | None = None, color_palette: list[str] | str | None = None, shared_coloraxis: bool = False, color_limits: Sequence[float] | None = None, logscale: float | None = None, colorbar: bool = True, text: str | None = None, axis: str | None = None, opacity: float | None = None, barmode: str | None = None, error_bar: str | None = None, aggregation_func: str | None = None, x_label: str | None = None, y_label: str | None = None, title: str | None = None, x_range: Sequence[float | str] | None = None, y_range: Sequence[float | str] | None = None, fig: Figure = None, row: int | None = None, col: int | None = None) Figure

Draws a barplot across levels of categorical variable.

Parameters:
  • data – A pandas.DataFrame-compatible structure of data

  • x – The name of the x dimension column in data.

  • y – The name of the y dimension column in data.

  • orientation – A PlotOrientation value to force the orientation of the plot.

  • slicer – The name of the column in data with values to slice the data : one trace is drawn for each level of the slicer dimension.

  • slice_order – A list of identifiers to order and/or subset data slices specified by slicer.

  • color – The name of the column in data with values to map onto the colormap.

  • color_palette

    • A string refering to a built-in plotly, seaborn or matplotlib colormap.

    • A list of CSS color names or HTML color codes.

    The color palette is used, by order of precedence :
    • To map color data specified by the color parameter onto the corresponding colormap.

    • To assign discrete colors to slices of data.

  • shared_coloraxis – If True, colorscale limits are shared across slices of data.

  • color_limits – A tuple specifying the (min, max) values of the colormap.

  • logscale – A float specifying the log base to use for colorscaling.

  • colorbar – If True, draws a colorbar.

  • text – A string or the name of the column in data with values to appear in the hover tooltip. Column names can be concatenated with ‘+’ to display values from multiple columns. Ignored when aggregation_func is not None.

  • axis – A AxisFormat value.

  • opacity – A numeric value in the (0, 1) interval to specify bar opacity.

  • barmode – A BarMode value.

  • error_bar – A ErrorBarType value or a Callable taking the x or y dimension as input and returning a (inferior_limit, superior_limit) tuple.

  • aggregation_func – A AggregationType value or a Callable taking the x or y dimension as input and returning a single value.

  • x_label – A string to label the x_axis in place of the corresponding column name in data.

  • y_label – A string to label the y_axis in place of the corresponding column name in data.

  • title – A string for the title of the plot.

  • x_range – A tuple defining the (min_range, max_range) of the x_axis.

  • y_range – A tuple defining the (min_range, max_range) of the y_axis.

  • fig – A plotly.graph_obj.Figure to add the plot to. Use in conjunction with row and col.

  • row – An integer identifying the row to add the plot to.

  • col – An integer identifying the column to add the plot to.

Returns:

A plotly.graph_obj.Figure.

statsplotly.catplot(data: DataFrame | dict[str, Sequence[Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]]] | Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], x: str | None = None, y: str | None = None, orientation: str | None = None, slicer: str | None = None, slice_order: list[str] | None = None, color: str | None = None, color_palette: list[str] | str | None = None, shared_coloraxis: bool = False, text: str | None = None, marker: str | None = None, axis: str | None = None, opacity: str | float | None = None, plot_type: str | None = None, jitter: float | None = None, normalizer: str | None = None, size: float = 6, x_label: str | None = None, y_label: str | None = None, title: str | None = None, x_range: Sequence[float | str] | None = None, y_range: Sequence[float | str] | None = None, fig: Figure = None, row: int | None = None, col: int | None = None) Figure

Draws a stripplot/boxplot/violinplot across levels of a categorical variable.

Parameters:
  • data – A pandas.DataFrame-compatible structure of data

  • x – The name of the x dimension column in data.

  • y – The name of the y dimension column in data.

  • orientation – A PlotOrientation value to force the orientation of the plot.

  • slicer – The name of the column in data with values to slice the data : one trace is drawn for each level of the slicer dimension.

  • slice_order – A list of identifiers to order and/or subset data slices specified by slicer.

  • color – The name of the column in data with values to map onto the colormap.

  • color_palette

    • A string refering to a built-in plotly, seaborn or matplotlib colormap.

    • A list of CSS color names or HTML color codes.

    The color palette is used, by order of precedence :
    • To map color data specified by the color parameter onto the corresponding colormap.

    • To assign discrete colors to slices of data.

  • shared_coloraxis – If True, colorscale limits are shared across slices of data.

  • text – A string or the name of the column in data with values to appear in the hover tooltip. Column names can be concatenated with ‘+’ to display values from multiple columns.

  • marker – A valid marker symbol or the name of the column in data with values to assign marker symbols.

  • axis – A AxisFormat value.

  • opacity – A numeric value in the (0, 1) interval or the name of the column in data with values to specify marker opacity.

  • plot_type – A CategoricalPlotType value.

  • jitter – A numeric value to specify jitter amount on the categorical dimension.

  • normalizer – A NormalizationType value to normalize data on the continous dimension.

  • size – A numeric value or the name of the column in data with values to assign mark sizes.

  • x_label – A string to label the x_axis in place of the corresponding column name in data.

  • y_label – A string to label the y_axis in place of the corresponding column name in data.

  • title – A string for the title of the plot.

  • x_range – A tuple defining the (min_range, max_range) of the x_axis.

  • y_range – A tuple defining the (min_range, max_range) of the y_axis.

  • fig – A plotly.graph_obj.Figure to add the plot to. Use in conjunction with row and col.

  • row – An integer identifying the row to add the plot to.

  • col – An integer identifying the column to add the plot to.

Returns:

A plotly.graph_obj.Figure.

statsplotly.distplot(data: DataFrame, x: str | None = None, y: str | None = None, slicer: str | None = None, slice_order: list[str] | None = None, color_palette: list[str] | str | None = None, axis: str | None = None, opacity: float | None = None, hist: bool = True, rug: bool | None = None, ecdf: bool | None = None, kde: bool | None = None, step: bool | None = None, equal_bins: bool | None = None, bins: Sequence[float] | int | str | None = None, cumulative: bool | None = None, histnorm: str | None = None, central_tendency: str | None = None, vlines: dict[str, tuple[str, float]] | None = None, hlines: dict[str, tuple[str, float]] | None = None, barmode: str | None = None, x_label: str | None = None, y_label: str | None = None, title: str | None = None, x_range: Sequence[float] | None = None, y_range: Sequence[float] | None = None, fig: Figure = None, row: int | None = None, col: int | None = None) Figure

Draws the distribution of x (vertical histogram) or y (horizontal histograms) values.

Parameters:
  • data – A pandas.DataFrame-compatible structure of data

  • x – The name of the x dimension column in data. If not None, draws vertical histograms.

  • y – The name of the y dimension column in data. If not None, draws horizontal histograms.

  • slicer – The name of the column in data with values to slice the data : one trace is drawn for each level of the slicer dimension.

  • slice_order – A list of identifiers to order and/or subset data slices specified by slicer.

  • color_palette

    • A string refering to a built-in plotly, seaborn or matplotlib colormap.

    • A list of CSS color names or HTML color codes.

    The color palette is used to assign discrete colors to slices of data.

  • axis – A AxisFormat value.

  • opacity – A numeric value in the (0, 1) interval to specify bar and line opacity.

  • hist – If True, plot histogram bars.

  • rug – If True, plot rug bars of the underlying data.

  • ecdf – If True, plot the Empirical Cumulative Density Function.

  • kde – If True, plot a line of a Kernel Density Estimation of the distribution.

  • step – If True, plot a step histogram instead of a standard histogram bars.

  • equal_bins – If True, uses the same bins for all slices in the data.

  • bins – A string, integer, or sequence specifying the bins parameter for numpy.histogram().

  • cumulative – If True, draws a cumulative histogram.

  • histnorm – A HistogramNormType value.

  • central_tendency – A CentralTendencyType value.

  • vlines – A dictionary of {slice: (line_name, vertical_coordinates)} to draw vertical lines.

  • hlines – A dictionary of {slice: (line_name, horizontal_coordinates)} to draw horizontal lines.

  • barmode – A HistogramBarMode value.

  • x_label – A string to label the x_axis in place of the corresponding column name in data.

  • y_label – A string to label the y_axis in place of the corresponding column name in data.

  • title – A string for the title of the plot.

  • x_range – A tuple defining the (min_range, max_range) of the x_axis.

  • y_range – A tuple defining the (min_range, max_range) of the y_axis.

  • fig – A plotly.graph_obj.Figure to add the plot to. Use in conjunction with row and col.

  • row – An integer identifying the row to add the plot to.

  • col – An integer identifying the column to add the plot to.

Returns:

A plotly.graph_obj.Figure.

statsplotly.heatmap(data: DataFrame | dict[str, Sequence[Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]]] | Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], x: str | None = None, y: str | None = None, z: str | None = None, slicer: str | None = None, slice_order: list[str] | None = None, color_palette: list[str] | str | None = None, shared_coloraxis: bool = False, color_limits: Sequence[float] | None = None, logscale: float | None = None, colorbar: bool = True, text: str | None = None, axis: str | None = None, opacity: float | None = None, normalizer: str | None = None, x_label: str | None = None, y_label: str | None = None, z_label: str | None = None, title: str | None = None, x_range: Sequence[float | str] | None = None, y_range: Sequence[float | str] | None = None, fig: Figure = None, row: int | None = None, col: int | None = None) Figure

Draws a heatmap.

Parameters:
  • data – A pandas.DataFrame-compatible structure of data

  • x – The name of the x dimension column in data.

  • y – The name of the y dimension column in data.

  • z – The name of the z dimension (i.e., color) column in data.

  • slicer – The name of the column in data with values to slice the data : one trace is drawn for each level of the slicer dimension.

  • slice_order – A list of identifiers to order and/or subset data slices specified by slicer.

  • color_palette

    • A string refering to a built-in plotly, seaborn or matplotlib colormap.

    • A list of CSS color names or HTML color codes.

    The color palette is used, by order of precedence :
    • To map color data specified by the color parameter onto the corresponding colormap.

    • To assign discrete colors to slices of data.

  • shared_coloraxis – If True, colorscale limits are shared across slices of data.

  • color_limits – A tuple specifying the (min, max) values of the colormap.

  • logscale – A float specifying the log base to use for colorscaling.

  • colorbar – If True, draws a colorbar.

  • text – A string or the name of the column in data with values to appear in the hover tooltip. Column names can be concatenated with ‘+’ to display values from multiple columns.

  • axis – A AxisFormat value.

  • opacity – A numeric value in the (0, 1) interval to specify heatmap opacity.

  • normalizer – The normalizer for the z dimension. A NormalizationType value.

  • x_label – A string to label the x_axis in place of the corresponding column name in data.

  • y_label – A string to label the y_axis in place of the corresponding column name in data.

  • z_label – A string to label the coloraxis in place of the corresponding column name in data.

  • title – A string to label the resulting plot.

  • x_range – A tuple defining the (min_range, max_range) of the x_axis.

  • y_range – A tuple defining the (min_range, max_range) of the y_axis.

  • fig – A plotly.graph_obj.Figure to add the plot to. Use in conjunction with row and col.

  • row – An integer identifying the row to add the plot to.

  • col – An integer identifying the colum to add the plot to.

Returns:

A plotly.graph_obj.Figure.

statsplotly.jointplot(data: DataFrame | dict[str, Sequence[Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]]] | Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], x: str | None = None, y: str | None = None, slicer: str | None = None, slice_order: list[str] | None = None, color: str | None = None, color_palette: list[str] | str | None = None, shared_coloraxis: bool = False, color_limits: Sequence[float] | None = None, logscale: float | None = None, colorbar: bool = True, text: str | None = None, marker: str | None = None, mode: str | None = TraceMode.MARKERS, axis: str | None = None, marginal_plot: str | None = MarginalPlotDimension.ALL, kde_color_palette: list[str] | str = 'magma', hist: bool = True, rug: bool | None = None, ecdf: bool | None = None, kde: bool | None = None, step: bool | None = None, equal_bins_x: bool | None = None, equal_bins_y: bool | None = None, bins_x: Sequence[float] | int | str = 'scott', bins_y: Sequence[float] | int | str = 'scott', histnorm: str | None = None, central_tendency: str | None = None, barmode: str | None = None, plot_type: str = JointplotType.SCATTER, opacity: float = 0.8, jitter_x: float = 0, jitter_y: float = 0, normalizer_x: str | None = None, normalizer_y: str | None = None, shaded_error: str | None = None, error_x: str | None = None, error_y: str | None = None, fit: str | None = None, size: float | str | None = None, x_label: str | None = None, y_label: str | None = None, title: str | None = None, x_range: Sequence[float | str] | None = None, y_range: Sequence[float | str] | None = None, fig: Figure = None, row: int | None = None, col: int | None = None) Figure

Draws a plot of two variables with bivariate and univariate graphs.

Parameters:
  • data – A pandas.DataFrame-compatible structure of data

  • x – The name of the x dimension column in data.

  • y – The name of the y dimension column in data.

  • slicer – The name of the column in data with values to slice the data : one trace is drawn for each level of the slicer dimension.

  • slice_order – A list of identifiers to order and/or subset data slices specified by slicer.

  • color – The name of the column in data with values to map onto the colormap. Specifying a color along with marginal != None raises a StatsPlotSpecificationError.

  • color_palette

    • A string refering to a built-in plotly, seaborn or matplotlib colormap.

    • A list of CSS color names or HTML color codes.

    The color palette is used, by order of precedence :
    • To map color data specified by the color parameter onto the corresponding colormap.

    • To assign discrete colors to slices of data.

  • shared_coloraxis – If True, colorscale limits are shared across slices of data.

  • color_limits – A tuple specifying the (min, max) values of the colormap.

  • logscale – A float specifying the log base to use for colorscaling.

  • colorbar – If True, draws a colorbar.

  • text – A string or the name of the column in data with values to appear in the hover tooltip. Column names can be concatenated with ‘+’ to display values from multiple columns.

  • marker – A valid marker symbol or the name of the column in data with values to assign marker symbols.

  • mode – A TraceMode value.

  • axis – A AxisFormat value.

  • opacity – A numeric value in the (0, 1) interval to specify bar and line opacity.

  • marginal_plot – A MarginalPlotDimension value.

  • kde_color_palette – The color_palette for the Kernel Density Estimation map.

  • hist – If True, plot histogram bars.

  • rug – If True, plot rug bars of the underlying data.

  • ecdf – If True, plot the Empirical Cumulative Density Function.

  • kde – If True, plot a line of a Kernel Density Estimation of the distribution.

  • step – If True, plot a step histogram instead of a standard histogram bars.

  • equal_bins_x – If True, uses the same bins for the x dimension of all slices in the data.

  • equal_bins_y – If True, uses the same bins for the y dimension of all slices in the data.

  • bins_x – A string, integer, or sequence specifying the bins parameter for the x dimension for numpy.histogram().

  • bins_y – A string, integer, or sequence specifying the bins parameter for the y dimension for numpy.histogram().

  • histnorm – A HistogramNormType value.

  • central_tendency – A CentralTendencyType value.

  • barmode – A BarMode value.

  • plot_type – A JointplotType value.

  • opacity – A numeric value in the (0, 1) interval to specify marker opacity.

  • jitter_x – A numeric value to specify jitter amount on the x dimension.

  • jitter_y – A numeric value to specify jitter amount on the y dimension.

  • normalizer_x – The normalizer for the x dimension. A NormalizationType value.

  • normalizer_y – The normalizer for the y dimension. A NormalizationType value.

  • shaded_error – The name of the column in data with values to plot continuous error shade.

  • error_x – The name of the column in data with values to plot error bar in the x dimension.

  • error_y – The name of the column in data with values to plot error bar in the y dimension.

  • fit – A RegressionType value. Computes and plot the corresponding regression.

  • size – A numeric value or the name of the column in data with values to assign mark sizes.

  • x_label – A string to label the x_axis in place of the corresponding column name in data.

  • y_label – A string to label the y_axis in place of the corresponding column name in data.

  • title – A string for the title of the plot.

  • x_range – A tuple defining the (min_range, max_range) of the x_axis.

  • y_range – A tuple defining the (min_range, max_range) of the y_axis.

  • fig – A plotly.graph_obj.Figure to add the plot to. Use in conjunction with row and col.

  • row – An integer identifying the row to add the plot to.

  • col – An integer identifying the column to add the plot to.

Returns:

A plotly.graph_obj.Figure.

statsplotly.plot(data: DataFrame | dict[str, Sequence[Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes]]] | Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], x: str | None = None, y: str | None = None, z: str | None = None, slicer: str | None = None, slice_order: list[str] | None = None, color: str | None = None, color_palette: list[str] | str | None = None, shared_coloraxis: bool = False, color_limits: Sequence[float] | None = None, logscale: float | None = None, colorbar: bool = True, text: str | None = None, marker: str | None = None, mode: str | None = None, axis: str | None = None, opacity: str | float | None = None, jitter_x: float = 0, jitter_y: float = 0, jitter_z: float = 0, normalizer_x: str | None = None, normalizer_y: str | None = None, normalizer_z: str | None = None, shaded_error: str | None = None, error_x: str | None = None, error_y: str | None = None, error_z: str | None = None, fit: str | None = None, size: float | str | None = None, x_label: str | None = None, y_label: str | None = None, z_label: str | None = None, title: str | None = None, x_range: Sequence[float | str] | None = None, y_range: Sequence[float | str] | None = None, z_range: Sequence[float | str] | None = None, fig: Figure = None, row: int | None = None, col: int | None = None, secondary_y: bool = False) Figure

Draws a line/scatter plot across levels of a categorical variable.

Parameters:
  • data – A pandas.DataFrame-compatible structure of data

  • x – The name of the x dimension column in data.

  • y – The name of the y dimension column in data.

  • z – The name of the z dimension column in data.

  • slicer – The name of the column in data with values to slice the data : one trace is drawn for each level of the slicer dimension.

  • slice_order – A list of identifiers to order and/or subset data slices specified by slicer.

  • color – The name of the column in data with values to map onto the colormap.

  • color_palette

    • A string refering to a built-in plotly, seaborn or matplotlib colormap.

    • A list of CSS color names or HTML color codes.

    The color palette is used, by order of precedence :
    • To map color data specified by the color parameter onto the corresponding colormap.

    • To assign discrete colors to slices of data.

  • shared_coloraxis – If True, colorscale limits are shared across slices of data.

  • color_limits – A tuple specifying the (min, max) values of the colormap.

  • logscale – A float specifying the log base to use for colorscaling.

  • colorbar – If True, draws a colorbar.

  • text – A string or the name of the column in data with values to appear in the hover tooltip. Column names can be concatenated with ‘+’ to display values from multiple columns.

  • marker – A valid marker symbol or the name of the column in data with values to assign marker symbols.

  • mode – A TraceMode value.

  • axis – A AxisFormat value.

  • opacity – A numeric value in the (0, 1) interval or the name of the column in data with values to specify marker opacity.

  • jitter_x – A numeric value to specify jitter amount on the x dimension.

  • jitter_y – A numeric value to specify jitter amount on the y dimension.

  • jitter_z – A numeric value to specify jitter amount on the z dimension.

  • normalizer_x – The normalizer for the x dimension. A NormalizationType value.

  • normalizer_y – The normalizer for the y dimension. A NormalizationType value.

  • normalizer_z – The normalizer for the z dimension. A NormalizationType value.

  • shaded_error – The name of the column in data with values to plot continuous error shade.

  • error_x – The name of the column in data with values to plot error bar in the x dimension.

  • error_y – The name of the column in data with values to plot error bar in the y dimension.

  • error_z – The name of the column in data with values to plot error bar in the z dimension.

  • fit – A RegressionType value. Computes and plot the corresponding regression.

  • size – A numeric value or the name of the column in data with values to assign mark sizes.

  • x_label – A string to label the x_axis in place of the corresponding column name in data.

  • y_label – A string to label the y_axis in place of the corresponding column name in data.

  • z_label – A string to label the z_axis in place of the corresponding column name in data.

  • title – A string for the title of the plot.

  • x_range – A tuple defining the (min_range, max_range) of the x_axis.

  • y_range – A tuple defining the (min_range, max_range) of the y_axis.

  • z_range – A tuple defining the (min_range, max_range) of the z_axis.

  • fig – A plotly.graph_obj.Figure to add the plot to. Use in conjunction with row and col.

  • row – An integer identifying the row to add the plot to.

  • col – An integer identifying the column to add the plot to.

  • secondary_y – If True, plot on a secondary y_axis of the fig object.

Returns:

A plotly.graph_obj.Figure.

Subpackages

Submodules

statsplotly.constants module

statsplotly.exceptions module

Custom exceptions.

exception statsplotly.exceptions.StatsPlotMissingImplementationError

Bases: Exception

exception statsplotly.exceptions.StatsPlotSpecificationError

Bases: ValueError

Raises when plot arguments are incompatibles.

exception statsplotly.exceptions.UnsupportedColormapError

Bases: Exception

Raises when colormap is not supported.

statsplotly.utils module

pydantic model statsplotly.utils.SubplotGridFormatter

Bases: _SubplotGridValidator

Wraps a Plotly Figure with methods to format the subplot grid.

fig

A plotly.graph_objects.Figure with a subplot grid.

Fields:

Validators:

check_common_xaxes_ticks(col_idx: int) bool
check_common_yaxes_ticks(row_idx: int) bool
set_common_axis_limit(shared_grid_axis: str = SharedGridAxis.ALL, plot_axis: str | None = None, common_range: bool = True, link_axes: bool = False) SubplotGridFormatter

Set common axis limits of a plot axis along a shared grid axis, optionally linking the axes.

Parameters:
  • shared_grid_axis – A SharedGridAxis value.

  • plot_axis

    A PlotAxis value.

  • common_range – If True (default), set a common range for the axes targeted by plot_axis.

  • link_axes – If True (default to False), links the axes targeted by plot_axis.

Returns:

A SubplotGridFormatter instance.

set_common_coloraxis(shared_grid_axis: str) SubplotGridFormatter

Set a common coloraxis along a shared grid axis

Parameters:

shared_grid_axis – A SharedGridAxis value.

Returns:

A SubplotGridFormatter instance.

set_suplotgrid_titles(grid_axis: GridAxis) Callable[[...], Any]
tidy_axes() None

Removes titles and ticks of linked axes in a subplot grid.

tidy_subplots(title: str | None = None, no_legend: bool = False, row_titles: list[str] | None = None, col_titles: list[str] | None = None) SubplotGridFormatter

Tidy a subplot grid by removing redundant axis titles and optionally adding annotations.

Parameters:
  • title – A string for the figure title.

  • no_legend – If True, hides the legend.

  • row_titles – A list of string the size of the row dimension specifying a title for each row.

  • col_titles – A list of string the size of the column dimension specifying a title for each column.

Returns:

A SubplotGridFormatter instance.

statsplotly.utils.rgb_string_array_from_colormap(n_colors: int, color_palette: str | list[str] | list[tuple[float, float, float]] | Colormap | None) list[str]

Returns a list of RGB string given n_colors and a color_palette reference.

This function attempts to extract RGB color values from built-in Plotly, Seaborn and finally Matplotlib colormaps.